dolphitech

MAUT

Matrix Array Ultrasonic Testing

Transducer Technology

Eskil Skoglund - Chief Research Officer

dolphitech

Ultrasound Transducer Basics

Different Ultrasound Technologies

UT Ultrasound Testing Single Element

A-scan

PAUT Phased Array Ultrasound Testing 1D-Array

B-scan (Cross Section)

MAUT Matrix Array Ultrasound Testing 2D-Array

C-scan

3D Volume Data

3

How does it work? dolphicam2 - Crossing Electrodes – 128 x 128 Elements – 16.384 A-scan data - Pitch 250 μm

Inside the TRM (Transducer Module)

Sound Field Profile 2D-Simulation 4 Transmit Electrodes

8 **dolphi**tech © 2022 Dolphitech – All Rights Reserved

Sound Field Profile 3D-Simulation 4 Transmit Electrodes

NDT Examples MAUT Matrix Array Ultrasound Technology

dolphicam2

787 impact damage

- Impact event on the fuselage of a Boeing 787 Dreamliner
- 480x480mm area mapped with the dolphicam2
- Main impact zone and disbonded stringer clearly visible

Aircraft photograph

Amplitude C-scan

- ToF (Depth) C-scan

FAA

CFRP Panel

ltem #	Flaw type	Size (")	Ply layer
1	Missing sealant	As shown	Between ply 8 & shear tie flange
2	Pillow Insert	Ø2.00	Between ply 16 & sound damper
3	Pillow Insert	1.00×1.00	Between lam ply 16 & shear tie pad ply 1
4	Pillow Insert	1.00×1.00	Between ply 2 & 3 of the stiffener
5	Pillow Insert	Ø1.50	Between ply 4 & 5 (25%)
6	Pillow Insert	1.75×0.50	Between ply 4 & 5 of the shear tie pad
7	Pillow Insert	Ø1.25	Between ply 8 & 9 (50%)
8	Pillow Insert	Ø0.50	Between ply 6 & 7 of the shear tie pad
9	Dremel cut	~0.05×1.00	Shear tie flange as shown
10	Flat bottom Hole	Ø0.25	0.015" T (Between plies 6 & 7)
11	Flat bottom hole	Ø0.75	0.030" T (Between plies 6 & 7)
12	Prepreg backing	1.25×1.25	Between ply 16 & stiffeners ply 1
13	Prepreg backing	2.00×2.00	Between ply 8 & 9 (50%)
14	Grease	Ø1.50	Between ply 8 & 9 (50%)
item #	Description	Quantity	Designation
15	Flat head bolt	12	100° FL HD, 1/4-20UNC-2A × 0.500
16	Hex nut	12	1/4-20UNC-2B
17	Shear tie flange	2	See shear flange drawing
18	Sound damper	4	4.5"×5.0" SMACSONIC pads
19	Sealant	As needed	

CFRP radii

- Tight corner radius of 0.09" thick carbon fiber laminate.
- Nominal radius of curvature is 0.3125" (~8mm).
- Circular reflectors are embedded, which are nominally 0.25" and 0.5" in diameter.

Wind blade GFRP

Technical drawing

- ToF (Depth) C-scan

General corrosion

- 3.5mm thick aluminium alloy

20

mm ()

Corrosion in 3.5mm aluminium alloy

100

120

سليوا مباديا وبإيدا والمابعة وتناصي وبالمبادة المرابع المابية

Material bonding

- 2mm thick woven CFRP with six different material tiles adhesively bonded to back face
- Half of each tile is bonded, half is left unbonded
- Difference between bonded and unbonded is clearly visible for all tiles
- Each tile has a different characteristic bonding signature enabling material discrimination

Inspection face

Back face

անուկունուկունուկունուկունունունունուն

190 200 210 220 230 240 250 260 270 280

Amplitude C-scan

30-Bonded 20-

10-Unbonded

0

30-

20-

mm 0

- ToF (Depth) C-scan

160

170

180

110 120 130 140 150

Unbonded 10-

20

30

90

100

10