

Ultrasound QNDE of additively manufactured components

Johan E. Carlson (& Shafaq Zia)
Signal Processing, Luleå University of Technology, Sweden

Additive Manufacturing

Ultrasound

Research Motivation

'Can we establish a relationship between ultrasound measurement, manufacturing parameters, and resulting material properties?'

The research question can be explored in the following ways:

- Can ultrasound be linked to the manufacturing parameters, and how can we differentiate between different samples based on ultrasound measurements?
- What is the influence of the manufacturing parameters on the variation in ultrasound captured from the AM samples?
- How to quantify the material properties and do quality assessment of samples based on ultrasound measurements?

In other words...

Can we replace time-consuming and destructive material characterization with a rapid, non-destructive ultrasound technique?

Sample Printing

■ Experimental design (selected samples of 316L stainless steel, LBPF)

Cube	Power (W)	LH (µm)	HD (µm)	t _E (s)	Speed (mm/s)	VED (J/mm³)
9	195	50	90	80	600	72.2222
2	195	50	100	80	600	65
7	195	50	90	80	700	62.90476
3	195	50	100	80	700	55.71429
11	175	50	95	80	650	56.8016
26	155	50	90	80	600	57.40741
20	155	50	100	80	600	51.6667
22	155	50	90	80	700	49.20635
24	155	50	100	80	700	44.28571

Experimental Setup – Ultrasound

Ultrasound Measurements

- Samples examined using 5 MHz and 7.5 MHz focused transducers.
- Data is collected from the build and transverse direction.
- Ultrasound echoes from 841 points were recorded for each sample.
- Ultrasound spectra computed for each recorded echo.

The supervised learning problem

Ultrasound data

Material properties or process information

Examples

- Linking the manufacturing parameters to ultrasound.
- Assessing the influence of the manufacturing parameters on variability within samples, based on ultrasound data.
- Linking the material properties to ultrasound data.

Modelling the parameters

- Data randomly split into two data sets
 - Training
 - Testing
- A model is built for estimation of manufacturing parameters from ultrasound spectra.

Results

Estimation and validation of manufacturing parameters using 5 MHz transducer in build direction.

Assessing the uncertainty

Monte-Carlo simulations

- Variations in ultrasound spectra used to build multiple prediction models.
- Comparing models to assess the prediction error variance.

Results

Prediction of manufacturing parameters using 5 MHz transducer in the build direction.

Examples

- Linking the manufacturing parameters to ultrasound.
- Assessing the influence of the manufacturing parameters on variability within samples, based on ultrasound data.
- Linking the material properties to ultrasound data.

Variability of microstructur backscatter

■ Idea:

- If a sample is a homogeneous isotropic solid, the backscatter statistics should be consistent across a sample.
- Large variation in ultrasound is an indication of large variations in microstructure.
- Linking ultrasound variation to manufacturing parameters... possible way to fine-tune the process.

Examples

- Linking the manufacturing parameters to ultrasound.
- Assessing the influence of the manufacturing parameters on variability within samples, based on ultrasound data.
- Linking the material properties to ultrasound data.

- Porosity Analysis
- Hardness Testing
- Texture Analysis
- Grain Size Measurements

- Porosity Analysis
- Hardness Testing
- Texture Analysis
- Grain Size Measurements

- Porosity Analysis
- Hardness Testing
- Texture Analysis
- Grain Size Measurements

- Porosity Analysis
- Hardness Testing
- Texture Analysis
- Grain Size Measurements

Prediction of Material Properties

- Hardness porosity and grain size
- Porosity
- Grain size

Uncertainties (±2σ)						
Sample	Hardness	Grain Size	Porosity			
2	0.123574	2.112873	1.143406			
3	0.125587	2.20308	1.162037			
7	0.12235	2.159209	1.148282			
9	0.123678	2.226281	1.175446			
11	0.127918	2.215124	1.184591			
20	0.120423	2.131117	1.112265			
22	0.120019	2.165733	1.127722			
24	0.122276	2.105198	1.1317			
26	0.124037	2.234214	1.16994			

Acknowledgements

Creaternity Graduate School

LUMIA - Luleå Material Imaging and Analysis

Thank you!

