









#### Walk through of the process to setup a TFM inspection

Swedish Conference | Gary Luckett | 07th April 2022



| 01 | Introduction                | 06 Personnel          |
|----|-----------------------------|-----------------------|
| 02 | FMC/TFM in codes            | 07 Limitations of TFM |
| 03 | Scan Plan & Probe Selection | 08 Example Weld       |
| 04 | Calibration                 | 09 Summary            |







# 01 Introduction

# Introduction

FMC/TFM advantages & challenges



Better imaging Several wave modes

Use of FMC/TFM in inspection projects worldwide



- Complementary technique
- Characterization

Factors limiting FMC/TFM application



- Knowledge
- Codes
- Technology





# 02 FMC/TFM in codes

# Codes Governing FMC/TFM

| Organization | Code including FMC/TFM                                                                                                                            |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ASME 🗸       | ASME BPVC Sec. V, Article 4. 2019                                                                                                                 |  |
| ISO 🗸        | ISO/DIS 23865 [IIW]: Non-destructive testing —<br>Ultrasonic testing — General use of full matrix capture /<br>total focusing technique (FMC/TFM) |  |
| API          | API 510 Refers to ASME Section V, Articles 4, 5 and 23                                                                                            |  |
| AWS          | PAUT was added to AWS D1.1 on 2020, no FMC/TFM yet                                                                                                |  |



# FMC/TFM in ASME Code

ASME BPVC Sec. V, Article 4. 2019

#### Main requirements:

- Examination / Evaluation / Documentation





# 03 Requirement – Scan Plan

# Scan Plan in TFM

#### **Main steps**

- 1. Part and/or weld definition
- 2. Probe selection
- 3. Zone setting
- 4. Wave set selection: TT, TTT, TTTT, LL, LLL, etc.
- 5. Flaw definition: planar or spherical, expected angle
- 6. Modeling: Acoustic Influence Map (AIM) and Sensitivity Index evaluation



#### **Probe Selection**

#### **Parameters to consider**

- **Aperture** *(Long enough to produce a far enough near field)* Appendix F-432
- Number of elements –

"Larger array is better for farther in time detection to improve resolution" Appendix F-432







5L64-A2 – pitch 0.6mm Good resolution and sensitivity middle zone

# Scan Plan in TFM

#### Why modeling is essential

- 1. Many wave sets are available (commonly 9+)
- 2. Proper wave sets are critical for detection and sizing
- 3. The type, orientation, and position of the flaw influence wave set selection
- 4. Part geometry will change wave set results
- 5. Focus is <u>expected</u> everywhere in the zone (need to confirm proper probes, frequencies, etc.)



# Scan Plan in TFM

**AIM tool** 









# 04 Calibration

# **Requirements for Calibrating TFM**

#### Main steps

- 1. Search unit performance (element check)
- 2. Velocity
- 3. Wedge Verification
- 5. Resolution verification
- 6. Path verification
- 7. Sizing verification (length and height)
- 8. Sensitivity
- 9. Encoder Calibration





# Amplitude Fidelity

- **Definition:** Amplitude fidelity (AF) is the measurement (in dB) of the maximum amplitude variation of an indication *caused by the TFM grid resolution*
- **Parameters:** Probe frequency and bandwidth, material velocity, grid resolution, applied envelope, etc.
- When the amplitude fidelity is above 2 dB, the user can either increase the resolution, reduce the zone size, or increase the probe frequency until the requirement is met.



## Amplitude Fidelity

**Resolution effect** 







# 05 Performance Demonstration

# Calibration Block



#### **Path verification**



 Using P/E modes cannot detect the full extent of the slot; therefore, self tandem modes are necessary.



Multigroup in OmniScan X3 unit





#### **Path verification**









#### **Path verification**

The imaging paths used during calibration shall be the same as those for the examination.

XI-471.1.1 Image Paths







#### **Height sizing verification**









**Sensitivity** 







ULTRASONICS





# 06 Requirement – Personnel

# Personnel Certification for PAUT & TFM

| Certification | Required training and examination                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PCN/CSWIP     | The minimum required duration of training which includes both theoretical and practical elements is: Level 1: 80 hours; Level 2: 40 hours (Direct Level 2: 104 hours for CSWIP and 120 hours for PCN)<br>The minimum duration for experience prior to or following success in the qualification examination is: Level 1: 3 months for CSWIP and 1 month for PCN Level 2: 3 months (Direct Level 2: 6 months for CSWIP and 4 months for PCN) |
| API QUPA      | Examinations are open to any applicant with a current or previous certification in ASNT UT Level II, Level III, or equivalent.<br>Candidates need to successfully complete a performance demonstration examination for their specific program.                                                                                                                                                                                              |
| ASNT TC 1-A   | Level II: 80 hours of training + 160 hours' experience                                                                                                                                                                                                                                                                                                                                                                                      |





# 07 Limitations of TFM

# Limitations of TFM

#### Limitations

- 1. Works within the near field (Probe selection is key)
- 2. Lack of Trained inspectors
- 3. Lack of acceptance of the codes
- 4. Limitations with complex geometry
- 5. Limitations related to scan speed and data file size
- 6. Sensitive to variations in thickness Tandem Techniques
- 7. Sensitive to variations in velocity

Tandem Techniques



# Limitation

#### **Thickness Variation**

#### Demonstration

**3T** 



| 19 mm | 15.6 mm (−25%) | 23.75 mm (+25%) |
|-------|----------------|-----------------|
|       |                | OLAMBIIC        |

# Limitation

#### **Velocity Variation**

#### Demonstration

**3T** 



| Velocity | Difference of 80mm/s (-17.9dB) |
|----------|--------------------------------|
|          |                                |





# Example Weld

#### **Description**

- Part: 24.4mm Carbon Steel
- Weld Prep: V bevel
- 2 flaws

- OmniScan<sup>™</sup> X3 flaw detector
- Probe: 5L64-A32
- Wedge: SA32-N55S-IHC







#### Demonstration - AIM Scan Plan





**OLYMPUS** 



















# 09 Summary



- FMC/TFM is governed by the same laws of physics as PAUT; however, the technique requires additional training since it involves new concepts and parameters.
- In comparison with requirements for PAUT inspection, amplitude fidelity is a new essential parameter to consider according to the code.
- A successful inspection is based on the selection of the proper probe and the right wave modes.
- AIM, multigroup, and the TFM envelope are essential tools for scan plan building, calibration, and sizing.
- Important to remember Phased Array and ToFD are excellent techniques for inspection of welds







Olympus, the Olympus logo, and OmniScan are trademarks of Olympus Corporation or its subsidiaries.